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STRESS INTENSITY FACTORS IN THE THIRD-STA%9EI
FAN DISK OF THE TURBINE ENGINE .

INTRODUCTION
Several failures of the TF-30 turbojet engine used in the F-14 aircraft have been attri-

buted to the initiation and growth of fatigue cracks in the third-stage fan disk at the 40vetail
region shown in Fig. 1. It is generally believed that these cracks are associated with an inter-
mittent high-frequency engine resonance and/or load fluctuations due to engine power.or speed
changes. Since the operational static load is already high, only moderate fluctuations are
required for crack initiation followed by fatigue growth. In either case, a reduction- in the static
stress level extends fatigue life. To this end, an experimental stress analysis of the dovetail was
performed by Parks and Sanford"1 ) using two-dimensional photoelastic models. The photoelastic
analysis showed a stress concentration factor of 5.2 in the disk fillet. The high concentration of
tensile stress in the fillet plus the fretting action at the edge of the bearing surface are the two
primary factors affecting crack initiation.

I_ ' C.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .1~I*~ 

Fig. I - TF-30 third-stage blade/disk
dovetail region

Manuscript submitted April 3, 1978.
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SANFORD AND DALLY

Fatigue cracking occurs in a reproducible manner in numerous lugs on each disk. A typi-
cal disk removed from service was carefully examined at NRL, and cracks were observed in 15
of the 36 lugs. In each instance, the crack initiates at or near the junction of the fillet and bear-
ing area of the disk lugs as illustrated in Fig. 2. After initiation, the crack extends upward
across the lug until it approaches the upper fillet, where a compressive stress field exists. At
this point the crack turns through an angle of 45 degrees and propagates across the upper region
of the lug as shown in Fig. 3.

I g

Fig. 2- Typical fatigue crack in a disk Fig. 3 - Final phase of crack extension
removed from service after the crack turns

This report provides a fracture analysis of a crack as it extends from the initiation point
into the lug. Of particular interest is the stress-intensity factor or the strain energy release rate
at the crack tip as the crack propagates into the complex stress field associated with the dovetail
region. Knowing the stress intensity factor along the path of the crack will enable a prediction
to be made of the propagation life of the fatigue crack from the Parist21 cyclic-growth relation-
ship

dafdy = C AK", (l
where daodY is the incremental crack extension per cycle, AK is the range in stress intensity
factor, and n and Care material constants.

To determine the stress intensity factor, two-dimensional photoelastic models 3.409 times
the size of the dovetail region of the disk were used. Artificial cracks were introduced in the
models by sawing. The cracks were extended incrementally along the known fracture path, and
isochromatic fringe patterns were recorded for each crack length.

The isochromatic patterns in the neighborhood of the crack tip indicated that the stress
field was of the mixed-mode type and that a far-field stress uax parallel to the crack was of
significant magnitude. As a method of determining the opening stress intensity factor K, and
the shearing-mode stress intensity factor K,, from isochromatic fringe loops under these condi-
tions was not available, it was necessary to develop a data-analysis procedure. This was acconn-
plished by using a modified near-field solution for the central crack problem to obtain a non-

2
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linear equation relating K,, KIl, and cra to the fringe order N and the fringe position(r, 0)
relative to the crack tip. Solution of this nonlinear equation and the extraction of K,, Ki,, and

a-,, was obtained using the Newton-Raphson iterative method combined with a least.squares

method to minimize error due to inaccuracies in measuring fringe parameters. Thbe results

obtained for K, and K,, were accurate to 10 to 15 percent based on individual deiterminations

and to about 5 to 7 percent based on mean-value estimates when several determinations were

made.

Results from the model analysis for K, and K,, were scaled to the prototype based on a

centrifugal load of 24,900 lb (111 kN) applied to the prototype. An effective stress intensity

factor Klff, related to K, and Ki,, was determined as a function of crack length.

EXPERIMENTAL PROCEDURE . I ;

The experimental approach was similar to the approach used by Parks and Sanford, 1 in

their photoelastic stress analysis. A complete description of the model geometry,.. the loading

fixture, and model manufacturing methods is contained in Ref. 1. The models. Use'd hin this

study were made from the same templates as employed by Parks and Sanford and hid 4in-plane

dimensions 3.409 times the prototype dimensions.

The models were fabricated from Homalite 100* sheets 0.255 in. (6.48 mni: ihick. A

crack was simulated in the model by using a fine-pitched jewelers saw 0.018 in. (05 tfi1ihick

with 40 teeth per inch. The crack tip was sharpened with a swiss jewelers file* with-.a.adius-of

about 0.008 in. (0.2 mm).

The model was loaded in a sodium diffused-light polariscope, and isochromatic fringe pat-

terns were photographically recorded. The crack was extended incrementally by`.sawngh. and

filing; then the loading and photographing sequence was repeated. A total of 23. coiBinations

of load and crack length were photographed.

Typical isochromatic fringe patterns obtained for three lengths of cracks are illustrated.in

Fig. 4. An enlargement of the fringe loops at the crack tip is presented in Fig. 5. Inspection of

Fig. 4 - Typical isochromatic fringes

for crack extension in the disk

dovetail

'G & L Industries, Wilmington, Delaware.

'Grobet Vallorbe No. 6 jewelers file.

3
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Fig. 5 - Enlargement showing details of the
fringe loops at the crack tip

Fig. 6 - Characteristic shape of upper
and tower loops

these fringe patterns shows that the loop tilt angle ,m, (defined in Fig, 6) and the maximum
radius rm associated with the fringe loops above and below the erack line are not the same.
Thus the cracks are propagating in a mixed-mode field with both K, and K1 affecting fatigue
crack extension.

METHODS OF ANALYSIS

A method to determine mixed-mode stress intensity factors from isochromatic fringe
loops has previously been developed by Smith and Smith U) Their method, which neglects the

4
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nonsingular far-field stress a,,, can be applied only when the axes of the upper and lower
fringe loops lie along a common line. Examination of Fig. 5 indicates that this conditiondis not
satisfied for the problem being considered here. For this reason it was necessary to 0extend the
method of analysis to include the aoX term.

For a crack subjected to both tensile and shearing loads the stress field in) thejiq' bbor-:
hood of the track tip can be approximated(') as

ox= Gil IKscos 2 |1- sin 2 sin 2 |-Kisin 2 + cos 2 cos 32jJ|-otx.

ory = amIK, cos 2 1 + sin 2sin 30 + K,, sin 02 c COS(2
Y 72 ~~irr+sin2 2 J2CsCS~

1 0 ~~~0 30 f a. 30].-*-.-1KB sin 2-cos 2 cos -- + Ki cos - sin sin :xy 21rr2 2 2 2i,
where the coordinates are measured from the crack tip.

The maximum in-plane shear stress Tm is related to the Cartesian components .of stress by

(2rm) 2 - (ay-ax) 2+ ( ) 2. (3)

The stress-optic law in photoelasticity which relates the fringe order N to the raxjimum
in-plane shear stress is

2 Tm = Nf/'h, . *. (4)

where f, is the material fringe value and h is the model thickness.

Substituting Eqs. (2) and (4) into (3) gives

(Nft/h) 2 =L [(K, sin 0 + K,, cos g)2 + (K// sin 0)2]

2 a0 ox
+ - ; sin -0 IKI sin (1 + 2 cos 0)

+ K,,(1 + 2 cos2 0 + cos 0)] + a- 2x- (5)

The size and shape of the isochromatic fringe loops are related to K,, Kr1 , and..qa,
through Eq. (5). It is possible to use this relation in two ways - first, to assume that;K 1,.:K11 ,
and a are known and to use Eq. (5) to determine the geometry of fringe loops. of a.gi&en
order or, second, to assume the geometry of the fringe loop is known and to use .Eq;. () to
determine K,, Kl,, and ao0 t

Thus Eq. (5) forms the basis of all of the methods used to determine KS, Kay and.. a0
from isochromatic fringe patterns. In this analysis three approaches were followed in develop-
ing solutions. In each approach the set of equations to be solved was nonlinear inthe un-
knowns K,, K,,, and ao ,. These equations were solved using the Newton-Raphson method as
applied to systems of equationsf5). Each of the approaches will be described.

Classical Approach
In the first determination of K, and (OK from symmetrical fringe loops, performed by

Irwin (6), it was noted that, for closed fringe loops near the crack tip, a point exists where

T = (6)

5



SANFORD AND DALLY

This point was assigned coordinates (tm, 6m). This relation gave Irwin a second equation to use
with a simplified form of Eq. (5) (K1 I terms eliminated) and enabled hitm to solve for K, and
a, in terms of the fringe order N and the position parameters rm and ams

This approach can also be used in the mixed-mode mode analysis by using information
from two loops in the near-field of the crack. Differentiating Eq. (5) with respect to 0, setting
8 = 0Em and r - r tm and using Eq. (6) gives

f (K,, K,, a'x) = (K2 sin2O,0 + 4K, K1, cos290 - 3K,21 sin2fm)

+ 2-(2a tsin -m tK;(cos~m + 2cos2G,, -K,1(2sin29. + sina)4

+ Cos m {[K;(sin8,m + sin20m) + K1j(2 + cos20? + cosed)ll

-0, (7)

where the coordinates Tm and ,,, define the point on any fringe loop which is farthest removed
from the crack tip, as illustrated in Fig. 6. Rewriting Eq. (5) in a form suitable for use with the
Newton-Raphson method gives

g (K,, K11, 1 [= X, sin 0 , + K,, CosOm) 2 + (KI, sin eyFI2s r2
+ G dsill (KI~f sin En, (I + 2 cos 0,,)

+ K(hl + 2 cos2 En + cos 041 + aOX (Nm f/h) 2 - 0, (8
where Nm is the fringe order corresponding to the point (ran adz

When the classical approach is used, the stress intensity factors K, and Kt1 and the remote
stress cra,, are determined from isochromatic data taken from two points - one on each of two
fringes. In concept any two loops can be used; however, in practice more accurate results are
obtained if one fringe is taken from the set of loops above the crack line and the other fringe is
taken from the set of loops below the crack line,

Substituting the radii rm and the angles G, from these two loops into Eq. (7) gives two
independent relations in terms of the parameters of interest. The third equation is obtained by
using Eq. (8) with data from either the upper or the lower loop. The three equations obtained
itn this manner are of the form

f,(KI. Kd, a = 0,

f4(K, Kc,, Ma)= 0 ()

g,(K,, K1, a0 ) = 0,
where the subscripts u and I refer to upper and lower loops respectively.

Although Eqs. (9) can be solved in closed form, the algebra becomes quite involved, and
a simpler approach using a numerica procedure based on the Newton-Raphson method was
employed, To describe the Newton-Raphson method, consider an arbitrary function hk of the
form

hk(K1, K,,, a0 ) = 0, (10)

6
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where k = 1, 2, and 3. If initial estimates are made for K,, K,1 , and a,, and substituted into
Eq. (10), the equality is not satisfied, since the estimates are in error. To correct the estimates,
a series of iterative equations based on a Taylor series expansion of hk are written as

(hi... = (h,.) -4 k 1 AK, + 1-^ .. AK,, + I A ldn _(11)

where the subscript i refers to the ith iteration step. AK,, AK,,, and AQ°ax are ,corr.ections to
the previous estimates. The corrections are determined so that (hk) ,i+ ' 0, and thus Eq. (11)
gives

i _ _ \ * A -- I A k

I d i AK, + 1-| hkiOK,J jOKj
. ' :: i(12)AK,, + Ijs jI A 0 ,, = h

&a-oxJ

Applying Eqs. (12) to Eqs. (9) and solving for the correction terms AK,, A I A" 9a,
yields, in matrix notation, h- .

AK, 1
AKIf= -
A-OX

Ofu

Of,

OK,
ag"

_K

Of,,

OK,,
of i

ag,,
&K,,

Oa

Of,
Oa0iax
agu,

60-,,

-1 .. ,. ,iiilii* -Ii -r 7 A
I . 1 I: ... I,,l l. l,.

(13),,:,::i:,l ~ ~ ,,,, .t

I Ii I

liii''' 1,11

(14)

The corrected values of K, K,11, and acX are given by

(K,),4 l = (K,)i + AK,,

(K,,) je = (K,,), + AKjj,

(o.) ili = (a0 x), + Aar.

The convergence of this method is rapid, and usually four or five iterations areiAUfflCielnt
for obtaining precise estimates of K,, K11, and cr,,,. A computer program written in BASIC,
with a file name MXDMD4, was prepared to compute K,, K,,, and a according to Eqs. (13)
and (14). This program is listed in Appendix A.

Selected-Line Approach

It is possible to simplify Eq. (5) by considering only the isochromatic data
defined by 0 = 7r. Then Eq. (5) reduces to

(Nf b)2 I =4 K1 + 4 K,, + 2
27Tr V-r OX'

which is independent of K,. Equation (15) can be written as

Nf,,/h = ± f 2K, + a0 1 .

along 1,, th,*.ie,,,,line
. .. i .. .

::: 0(15)

(16

.- ( W

7

.k : ::,.i,! -� :. I U . -.!:::: :-F; ... ;! � ,
!;, �... :.. ;;;;1:R!:,-e-!1! !!1o;.:::! �: .1 . .. .... . .

A -
i
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-XI 1-t-I -- , I ( OK, ji --- ' (6KI, ji __ " jOo,_Jj -



SANFORD AND DALLY

The negative sign is selected, because K,, < 0 for isochromatic intercepts with the 0 = w line,*
Consider two isochromatics N1 > N2 , which intercept the 0 = ir line at positions r; and rz as
shown in Fig. 7 and select the minus-sign solution in Eq. (16). Then

Ntofo _ 2 K,, (17a)

and

N2 f0 _ 2 K,,

Subtracting Eq. (17b) from Eq. (17a) to elimtinate a7, gives

Ar x/ #7K1r Ir K,, = fA 2 r-r(NI(NI (IS

which is negative, since N, > N2 and r2 > rl. Finally aa is obtained from Eq, (181 and Eq.
(17a) as

Nifc _ 2K,, (19)

\' \N m L _a, _x_

Fig. 7 - Isochromatic fringe orders N and N6
intersecting the line t - ir (upper crack edgel

To determine KI, reevaluate Eq. (5) with 0 iT/2 and obtain

(Nfjh') 2 = iL r Kr 2 + K 2) + (K, + Kt,) + aX J (20)

Equation (20) is quadratic in terms of K,; thus

-C, -6+ 6b2- 4ac
f, 2a2 (21)

*A similar development can be made when KIt > 0, except that the isoehromaties intersect the lower edge
of the crack at 0 - 7r.

a
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where

a =1/21T r3,

6 = a~~~~~~j.,P 7. ~~~~~(22)b = T./fox 2 r'e2:

c = (K3J/2rr3) + (K,, ao4,jr) + a3 W - (N3 f,h)*
Note that N 3 and r3 are defined in Fig. 7. The plus sign is selected in front of th i Eq.
(21), since K, > 0.

Least-Squares Approach

The least-squares approach fits Eq. (5) to the data at a number of arbitrary points over the

fringe field in the neighborhood of the crack tip using the unknowns K,, Ki1, and er as the

fitting parameters. The fitting process is similar to that used in the classical approach'in that the
Newton-Raphson method is employed; however the least-squares approach uses data from k
arbitrary points, where k > 3.

Applying the iteration scheme suggested in Eq. (12) to k equations of the form- given in
Eq. (8) results in an overdetermined set of linear equations in terms of the unknowns AKI,
AK,1, and Aa of the form i I

&g1 Og1 8g1
OK, O K 11 Oa

g( 0g2 0g2 09 AK2
92 OK, OKe ah AK,, i I

.K .K, j~a - (23) pt 9k i~~~~~~~~Ok O, g 

9k1 89k1 Oa~k

For brevity rewrite the matrices in Eq. (23) as I -

[g] = [a] [AKI. (24)

It can be shown that [AK] in Eq. (24) can be determined in the least-squares sense b

ing both sides from the left by [al r where [a] Iis the transpose of [a]:

[a]gi -- [a r [al [AK ' 25)

or 

WI = [c] [AK], (26)

where

[d] = [a] [g]

and

[c- (alTl [a]. -

Finally,

[AK] = ['1-' [d], ; i27;

where h[l' is the inverse of [ci.

9



SANFORD AND DALLY

The solution of Eq. (27) gives AK,, AK,,, and Aoas which are used to correct initial esti-
mates of K1, K,1, and a0,, to obtain a better fit of the function g to the k data points. By use
of the matrix operations available in BASIC, a computer program with a file name MXUMLS
was written to determine K1, K11, and a@X using data from ten points over the fringe field.
This program is listed in Appendix B.

VERIFICATION OF METHODS

All three methods were verified and were found to give accurate results (to ±0.1 per-
cent), providing exact input data were used. The data required for verification were generated
by substituting selected values of K,, K1,, and ct,,, into Eq. (5). The resulting expression was
then used to determine the fringe order N at specified (r, 0) pairs.

Analysis with real data is less accurate, because experimental errors will occur in deter-
mining the r and 0 associated with the location of a point on an isochromatic fringe. Errors in U
of ± 2 degrees and in r of ±0.005 in. (0.13 mm) should be expected. The errors ate primarily
due to difficulties in locating the crack tip at the end of the saw cut.

The classical approach is perhaps the most error prone of the three methods, since A,,
must be determined for both the upper and lower loops, Considering the difficulty in locating
the crack tip and in locating the point corresponding to rm on both isochromatic fringe loops,
errors in 0 ,m of ±5 degrees may be anticipated, An example was run with computer program
MXDMD4 such that 0m on the upper loop was increased by 5 degrees and 0, on the lower
loop was decreased by 5 degrees. The error in the predictions of K,, K1,, and cr,, was 13t9-,
15.6, and 38 percent respectively.

The selected-line, classical, and least-squares methods were compared by using the analyt-
ically generated point plot of the fringe pattern shown in Fig. 8. Measurements of rC #, and N
were taken from this point plot using the same techniques which are used with actual photo-
elastic fringe patterns. The data with typical measurement errors were processed, and the
results of the error analysis are shown in Table 1. These results indicate that the least-squares
method with the program MXDMD5 provided the most accurate estimates of K, and K,,.

ANALYSIS OF DATA

Negatives of the fringe patterns were projected in a photographic enlarger onto the data
sheet shown in Fig. 9. The projected size of the image was approximately 10 times the actuat
model size. Five data points associated with each fringe loop were marked on the data sheet.
These data points were usually at the extremity of a fringe loop, where changes in r with 0 are
small and measurement error is minimized. The scale distance (5 mm) from the negative was
marked on the data sheet.

Measurements were made with proportional dividers to determine the radius associated
with each data point. Values of angle 0, radius r, and fringe order N associated with ten to 40
data points were made from each negative of the isochromatic pattern.

These data were used as input for the MXDMD-5 program to determine K,, K1,, and crm.
Ten data points were used for each determination, five from an upper loop and five from a
lower loop. When more than ten data points were available, different combinations of data sets
were employed and several estimates of K,, Kg, and cr,,, were made. In these instances, aver-
ages of the individual determinations were taken. The mean values of Kt, K,,, and sta are
presented in Table 2.

10
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Table 2 - Summary of Results for K1 , KI, and
cr for the Photoclastic Model

D-1-29 & 30 1 100 0.410 1044 244 -3236D-1-31 & 32 J 1 100 0.518 1196 347 -519.-

SCALING FROM MODEL TO PROTOTYPE
Conversion of the results from the photoelastic model of the turbine disk to iv1.., 'hk.*

correspond to the actual prototype requires the use of a scaling relationship. The .'va -ne eipi..-
tion for K, or Kg is

WI 11) - A/ I X2 x 3(K1,,)m (28)

where the subscripts p and m refer to the prototype and model respectively. Thel tcrns~ Ai1, X2,
and X3 in Eq. (28) are scaling factors defined as follows: I I 111111

XI the in-plane scaling factor = wi! wp = 3.409, D(29)

where wm is the center-to-center dimension between two adjacent blades on the rnodeli:,and is
3.808 in. (96.7 mm) and wp is the corresponding dimension on the prototype and is i.21i'7 in.
(28.38 mm);

X = the thickness scaling factor = hI/hp = 0.111, 00:.
where h. is the length of the dovetail slot and is 2.30 in. (58.34 mm) and h,, isthe 1 1i,.mdeI
thickness and is 0.255 in. (6.48 mm); and i I I

3= the load scaling factor- P/PP, = 124.5, E .I..III.II1(11)

where Pp = 24,900 lb (111 kN) and Pm = 200 lb (890 N).
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Number] P Crack K1 K/ r oKx
Record No. of Load Length I (Psij) I (psiY

_____ ___ _ ___ I Readings j (lb) (in.) (_si______si ___ 1 Ps___

Before Crack Turns
D-2-6 & 7 1 800 0.096 573 -569 2482
D-2-8 & 9 1 1000 0.096 693 -706 2974.:

D-1-3 1 200 0.122 439 -216 327
D-1-4 1 200 0.185 475 -159 238:..

D-1-5 & 6 5 200 0.241 348 -219 37,. -

D-1-7 & 8 6 200 0.357 318 -285 37 .
D-1-9 & 10 7 200 0.466 512 .-203 i299:

D-1-11 & 12 7 200 0.622 539 -281 .

D-1-13 & 14 5 200 0.710 549 -221 13.4--
D-1-15 & 16 3 200 0.843 392 -334 -15x2- .
D-1-17 & 18 5 200 0.955 351 -444 :213'

After Crack Turns
D-1-19 & 20 1 200 0.100 793 -365 -370
D-1-21 & 22 3 150 0.190 782 -184 431
D-1-23 & 24 1 200 0.190 1038 -198 533''
D-1-25 & 26 2 100 0.296 815 -86 .j13:'
D-1-27 & 28 1 100 I 0.296 786 -163 I15-4
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The scaling equation for the length a of the crack is

a, = ar/XAI (321

These scaling relations assume that the crack in the prototype propagates in a two-
dimensional manner (as through-thickness cracks with a straight frontd, Inspection of the frac-
ture surface of the lugs which have bee n pulled from the disk, as shown in Fig. 10, indicate

that the cracks propagate with three-dimensional characteristics. The cracks initiate at a point
and do not extend along the entire thickness of the disk. Instead the crack front exhibits
significant curvature. Because of these differences in the crack shape between the model and

the prototype, the results presented here should be considered as a first approximation, More
exact predictions would require three-dimensional photoelastic studies to more adequately
model the crack shape.

Fig. 10 - Typical fracture surface showing the three-
dimensional characteristics of a fatigue crack

Numerical values of K, and Kg, related to a load on the prototype of o = 24,9X0 tl (111
kN) are given in Table 3 as a function of crack length a,,. Inspection of Table 3 shows that

both KI and K,, vary between narrow limits as the crack grows from 0 to 0.2R0 in. (711 mm}

deep. To assess the influence of the combined effect of K, and Kd,, it is appropriate to consider
the total strain energy release rate G, which is given by

G = 0, G+,, (33)

where, for plane strain,

G E K 2 (34a)
E I

and

£al= X2 (34X

in which E is the modulus of elasticity and v is Poisson's ratio.

Substituting Eqs. (34) into Eq. (33) gives

0= VK2 (35)
E eff'

14
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Table 3 - Stress Intensity Factors K and K 11

in the Third-Stage Fan-Blade/Disk P = 24,900 lb
Centrifugal Load

KI Ki a K eff

(ksi J/E.) (ksi /in.) ] (in.) (ksin.)

Before Crack Turns
3.65 -3.63 0.28 5.15
3.54 -3.60 0.028 5.05

11.20 -5.51 0.035 12.48
12.12 -4.06 0.054 12.78
8.88 -5.59 0.071 10.49
8.11 -7.27 0.105 10.89

13.06 -5.18 0.137 14.05
13.75 -7.17 0.182 15.51
14.01 -5.64 0.208 15.10
10.00 -8.52 0.247 13.14
8.96 -11.33 0.280 14.44

After Crack Turns
20.23 -9.31 .029 22.27
26.60 -6.26 .056 27.33
41.59 -4.39 .087 41.82
40.11 -8.31 .087 40.96
53.28 12.45 .120 54.71
61.03 17.70 .151 63.54

where

Keti K?+KA. 4.(36)
eff~~~~~~~~~~~~~~~~~~~1 s .:..<

The effective stress intensity factor Kff, which governs the rate of crackr;-gation
da/dN according to Eq. (1), increases from zero to a value of about 14 ksisii ~4etscrack
extends to a depth of about 0.100 in., as shown in Fig. 11. Continued crack extefisifrom
0.100 to 0.280 in. occurs at nearly constant Keff.

After extending a distance of 0.280 in., the crack approaches the compressive-stress field
near the upper fillet of the lug. The value of K, decreases and IKII increases until the crack
turns through an angle of about 45 degrees. After turning, K, becomes dominant and K,1g
increases markedly with further crack extension. It is believed that the rate of crack ppa-
tion will increase rapidly after the crack turns.

ERROR ESTIMATE .
In most of the cases examined here, several fringe loops were available for analysis and

30 or 40 data points could be obtained from regions on the fringe loops where r was not chang-
ing rapidly with respect to 0. In these instances, the data could be grouped into different sets. of
ten data points, and multiple determinations of the K field could be made. An example of the
scatter in the determination of K,, K,,, and ao0 is shown in Table 4 for a typicat set of data.

15
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P = 24,900 b t1 t t kN) a

0 o

0 0 

a,
______ _____ ______ _____ ______ _ L _ ______ _____ ____I

0 0o05 0.1Q 015 0 20 0.25 I

t 2 4 6 0 l 2 3 4 mm
CRACK TIP POSITION, a OR a,

Fig. I1 - Effective stress intensity factor K
as a function of crack length a,

Table 4 - Values of K 5 K1 , and cx

Determined with Seven Sets

of Ten Data Points

K K11|X

525.7 -203.8 296.2
Seven 456.6 -257.6 321.0
sets 547.4 -207.5 227.7
of 516.9 -194.8 314.2

data 444.4 -193.2 369.3
points 509.7 -195.2 300.1

583.9 -170.0 260.6
i 512.1 -203.1 298.4

SX 48.8 26.8 45.1
S'jx 0.095 0.132 0.151
S 18.4 10.1 17.0

Sf? 0.036 0.050 0.057
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The mean value xt, standard deviation S,, and coefficient of variation Sj/x wee der-
mined and are also listed in Table 4. These statistical parameters indicate that errors in jdivi-
dual determinations of K, of about +10 percent and in K,, of about ±13 perept pn be
expected about 68 percent of the time. If the error is due to random causes, then the 1yOaging
process improves the accuracy. The standard deviation of the mean S. is

where n is the number of measurements.
The values of S and Sr/5 listed in Table 4 illustrate the improvement in piediacions

based on mean values. In this case, errors of ±3.6, ±5.0, and ±45.7 percent in 1, &l,, iand
acrX can be anticipated 68 percent of the time. Higher errors would be anticipated 32,.perctnt of
the time.

REFERENCES
1. V.J. Parks and R.J. Sanford, "Experimental Stress Analysis of the TF-30 Turbine Enie

Third-Stage Fan-Blade/Disk Dovetail Region," NRL Report 8149, Aug. 1977.
2. P. Paris and F. Erdogan, "A Critical Analysis of Crack Propagation Laws," ASME Trans. D

85, 528-534 (1963).
3. D.G. Smith and C.W. Smith, "Photoelastic Determination of Mixed Mode Stress Intensty

Factors", Engrg. Fract. Mech. 4 (No. 2), 357-366 (1972). .

4. P.C. Paris and G.C. Sih, "Stress Analysis of Cracks," ASTM STP No. 381, pp 30-81, 1965.
5. L.G. Kelley, Handbook of Numerical Methods and Applications, Addison Wesley, Reading,

Mass., 1967, p. 99.
6. G.R. Irwin, discussion of the paper by A.A. Wells and D. Post, "Dynamic Stress Distribu-

tion Surrounding a Running Crack - A Photoelastic Analysis," Proc. SESA 16 (No.' 1),
69-93 (1958), discussion on pp. 93-96.

17



Appendix A

PROGRAM MXDMD4

00001 REM A PROGRAM EMPLOYINU THE CLASSICAL METHOD OF ANALYSIS
00002 REM FOR DETERMINING KI*K2 AND SIGMA SUP OX
00003 REM THE NUMERICAL ANALYSIS IS EASED ON THF NEhTON RAPHSON METROD.
00004 REM
00009 REM CAUTION THETA FOR LOisER LOOP IS NEGATIVE.
00010 PRINT "INPUT THFTASFADIUS AND FRINbF ORDER FROM UPPER LOOFP
00015 INPUT TIPRl3NI
000O0 PRINT "INPUT THFTA.RADIUS AND FRINGE ORDER FROM LOtER LaOPF"
00025 INPUT T2)RP7 N?
00030 PRINT "INPUT MATERIAL FPINUE VALUE AND MODFL THICKNESS"i
00035 INPUT PH
00040 PRINT "INPUT INITIAL F.STIMATF OF K 1"
00045 INPUT KI
0O050 K2m0
00055 K30G
00060 PRINT"NUMFER OF ITERATIONS M IS";
00065 INPUT M
00070 REM COMPUTE TRIG FUNCTIONS
00075 Tl=3.14t159*TI/l80
0008O T2-3.14159*TP/18C
00065 S0=S0RT(2*3.14159*RII
00090 SI =SIN(TI)
00095 S2=CS(CTl)
00100 S3mSINCTI/2)
00105 S4zCCECTI/2)
00110 S5rSQRT(2*3.14159*R2)
00115 S6=SIN(T2)
00120 S7=C0S(T2)
00125 S8S=iNtT2/2)
00130 S9=COS(T2P2)
00135 RFM COMPUTE COFFFICIENTS OF TAYLOP'S SFRIES-
00140 Alz-S*#2/SO**2
00145 A2=4*Sl*S2/SQ**'2
00150 A3=(4*S2**2+SS**2)PS0**2
00155 A4a?*S3*S1*(t+2*L21/.S0
00160 A5=2*S3*(I+2*S2**2+52)/SO
00165 A9=(N1*P/H)**2
00170 BI=S6**2/S5**2
00175 P2=4*S6*S7/S5**?
0018 Rc 3= sk*sS7*24 S6**2)/oS5**
00185 BA=P*S8*S6*(I+2 57)r/S5
00190 85=2*S8*(I.+2*57**2+S7I/S5
00195 PS=(NP*P/H)**P
00200 CI=2*Sl*S2/SO**2
00205 C2ra*(52**2-SI**2>/SO**2
00210 C3=-6*Sl*S2/S0**2
00215 C4=C2/S0)*(S3*(S2+2*S2**2-P*SI**2VI( * 5*Sh(*2451*SP)1
oaso0 C5=(PtSO>*(-S3*(A*51*52+511+( .5*Sk)*C2+S**2-SI**24S2f

00225 Dl=2*S6*S7/S5**2

Is
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00930 Dc=4*(S7**2-S6**2)/S5**2
00235 D3=-6*S6*S7/S5**2
002AO DA=(2/SS)*(S8*(S7+2*57**2-2*S6**2)+( .5*59)*{S6+2*S6*57))
00P45 D5=(2/S5)*(-SS*(4*S6*S7+S) +( .5*S9)*(P+S7**2-S6**2S+l7):.
00250 PRINT
00255 PRINT " K SUP I K SUE 2 S1bMA SUP OX"
00260 PRINT iIAKPsK3
00265 DIM F(3),UJ(3s3),V(3o3),Y(3s3),X(3)
00970 REM PFt-IN ITFRATIVE SOLUTION
00275 FOP L=l To M
00280 FC I )=AI*KI**2+A2*KI*KP+A3*K2**2+A4*K1*K3+AS*K2*K3+K3*,*2,AS
00285 F(2)=RI*KT**2+R2*K I*K2+B3*K2**2+P4*N1*K3+B5*K2*K3+KP3*2eEfp
00290 FR3)=DI*Kl**2+D2*KI*K2+D3*K2**2+D4*KI*K3+DS*K2*K3
00295 UI, l)s2*AI*KI+A2*KP+A4*K3 1',, ..........
00300 UC I,2)1A2*KI+2*A3*K2+AS*K3 iiin'4
00305 UC 1.3)=A4*K1+A5*K2+2*K3 !,A 1,iI hi

00310 U(21I)=2*BI*2 I +22*K2+B4*X3
00315 su(2,2);B2*KI+2*B3*K2+B5*K3
00320 112, 3) 8 4*X I +B5*K2+2*K3
00325 U 3s 1 2*DI *K I D02*K2+D4*K3
00330 U(32P)=DP*KI+2*D3*K2+D5*K3
00335 U(3,3)1D4*K1+D5*K2
00340 MAT V=INV(U)
00345 MAT Y-V*F
00350 MAT X=(-J)*Y
00355 KI1Kl+X(I)
00360 K2-K2+X(2)
00365 K3=K3+X(3)
00370 PRINT KlXK2IK3
00375 NEXT L
00380 END

;i j,:;g Aj ,:!:
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Appendix B

PROGRAM MXDMDS

00001 REM A PROGRAM kHICH USES THE LEAST SQUARES METHOD TObETHER WITH THE
00002 REM NEWTON RAPHSON METHOD TO DETERMINE K1sK2 AND SI GA SUB 0X
00003 REM FROM AN OVER DETERMINED SYSTEM OF EQUATIONS.
00004 REM THE PROGRAM IS WRITTEN TO ACCEPT 10 DATA POINTS.
00005 REM
00010 PRINT "INPUT INITIAL ESTIMATE OF KI"
00035 INPUT K1
000210 K2=0
00025 X3=0
00030 PRINT "INPUT DATA FOR THETA CT), RADIUS (R) AND FRINGE ORDER (l)"
00035 FOR J- TO 10
00040 INPUT T(J).R(J)sN(J)
00045 T(J)=3.14159*TCJ)/1B0
00050 NEXT J
00055 PRINT "MATERIAL FRINGE VALUE AND MODEL THICKNESS-;
00060 INPUT PH4
00065 REM CONVERT UNKNOWNS TO NORMALIZED FORM.
00070 KI=KI*H4/P
00085 PRINT "SPECIFY NUMFER OF ITERATIONS";
00090 INPUT X
00095 DIM k
00100 PRINT " K SUB I K SUB 2 SIGMA SUB OX"
00105 FOR I1= TO 10
00110 S0(I=2*3. 41 59*RC I)
00115 tSII)=SIN(TC I))
00120 s2c1)=COSCTC 1))
00125 S3(I)=SIN(T(I)/2)
00130 S4(1 )=COS( TC I )/2)
00135 Al CI)=CSl (I ) **P'S0C I)
00140 A21)=4*SIl)*52(I),S0(I)
00145 A3(I )=(4*CS2( I)**2+(SI ( E))**2)/SO(I)
00150 AA( I )=2*S3C I I*S ItI )*C t+2*S2(I) )/SQRT( SO(I))
00155 ASCI)t2*S3(1)*(14-2*(52(I))**24s2G))/SQRTCSOCI))
00160 A6( I )=(N( I) )**2
00165 NEXT I
00170 REM BEGIN ITERATIVE SOLUTION.
00175 FOR L=I TO Q
00190 ElzO
00185 FOR 1=1 TO 10
00190 E I )=ASCI1)*N2*X34K3**2-A6(I1)
00195 G I) ACl I )*KI**2*A2(C )*Kt*K2+A3(1 )*KP**2.A4(1 )*KI*K3+EUl)
00200 A(I,1)=2*AIt()*K1.A2(I)*K2+A4A(I)K3
00205 AC1s2>=A2(1)>*K+2*A3C)*K2+A-SCI )*x3
00210 AC I,3)=A4CI )*KI+ASCI )*K2+2*K3
00215 F1=EUCI)*42
00220 NEXT I
00225 MAT k -TRN(A)
00230 MAT CzW*A
00235 MAT DfI%*G

20



MAT UzINV (C)
MAT V=(-I)*U
MAT X=V*D
KI=KIIXC 1)
KP=K2+XC2)
K3=K3+XC 3)
PRINT Kl*P,'4HAK2*P/H4AK3*F-H4
NEXT L
PRINT "RELATIVE ERR0R"
PRINT El
END
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00240
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00260
00265
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00280
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